AirServer: a Mind-Controlled Assistive Quadrotor Drone Aided by an Intelligent Fuzzy PD Controller

نویسندگان

  • Abdel Ilah N. Alshbatat
  • Liang Dong
  • Peter J. Vial
چکیده

Paralysis is the result of a block in the information pathway between the brain and the limbs. Patients losing bodily control in this way are unable to move as they need to and are, therefore, unable to look after their own needs. The goal of this paper is to design a functioning quadrotor drone that will respond to a patient’s brain activity and accordingly enables them to have normal daily functions. We have designed an innovative brain computer interface (BCI) system to control the drone using only the power of thought. The drone has been designed and built using commercial components. An Emotiv EPOC headset was used to gather brain activity and communicate it to the computer which uses Emotiv software and a translation program to convert the signal pattern into a command that is able to be read by an OpenPicus FlyPort module installed on the quadrotor drone. Due to the non-linear nature of the quadrotor, an innovative control law was derived using the Fuzzy Proportional Derivative (FPD) technique. A complete simulation was used to tune the controllers in MATLAB Simulink. The controllers were designed and implemented using on-board microcontrollers and an inertial measurement system. The entire system was tested and verified in an actual flight test. The findings indicate the potential of BCI system for controlling quadrotor, and thus enabling paralyzed people to improve their life and maximize communication capabilities and independence. Keywords— Assistive technology, Brain computer interface, Electroencephalogram, Fuzzy logic controller, PD controller, Quadrotor drone, Unmanned aerial vehicle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks

During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...

متن کامل

MINIMUM TIME SWING UP AND STABILIZATION OF ROTARY INVERTED PENDULUM USING PULSE STEP CONTROL

This paper proposes an approach for the minimum time swing upof a rotary inverted pendulum. Our rotary inverted pendulum is supported bya pivot arm. The pivot arm rotates in a horizontal plane by means of a servomotor. The opposite end of the arm is instrumented with a joint whose axisis along the radial direction of the motor. A pendulum is suspended at thejoint. The task is to design a contro...

متن کامل

On Quadrotor Navigation Using Fuzzy Logic Regulators

In this paper the cascaded fuzzy controller system for quadrotor steering and stabilizing was deliberated. The mathematical model of quadrotor and its cascaded fuzzy controller were simulated using Matlab Simulink software. The fuzzy system was divided into three subsystems for controlling position and speed of the quadrotor and for steering rotation speed of propellers. In the article the squa...

متن کامل

Intelligent Flight Control of an Autonomous Quadrotor

This chapter describes the different steps of designing, building, simulating, and testing an intelligent flight control module for an increasingly popular unmanned aerial vehicle (UAV), known as a quadrotor. It presents an in-depth view of the modeling of the kinematics, dynamics, and control of such an interesting UAV. A quadrotor offers a challenging control problem due to its highly unstabl...

متن کامل

Fuzzy PD Cascade Controller Design for Ball and Beam System Based on an Improved ARO Technique

The ball and beam system is one of the most popular laboratory setups for control education. In this paper, we design a fuzzy PD cascade controller for a ball and beam system using Asexual Reproduction Optimization (ARO) technique. The ball & beam system consists of a servo motor, a grooved beam, and a rolling ball. This system utilizes a servo motor to control ball’s position on the beam. Chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016